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THEORETTCAL LIFT DISTRIBUTION AND UPWASE VELOCTEIES .
" FOR THIN WINGS AT SUPERSONIC SPEEDS

By John C. Evvard and L. Richard Turner

A method for calculating the upwash-yelocity component in the
vicinity of thin wings at supersonic speeds is presented. The
method is applied to obtain an explicit expression for the upwash
over wing tips of failrly general plan form and profile. As a -
special case, numerical values are presented for the slopes of the
streamlines off the tip of a rectangular plan-form thin flat-
plate wing. The formulation 1g extended to give a method for
obtalning the veloclity potential at points on arbitrary thin wings
influenced by isolated or interacting external flow fields off the
wing vlan form,. The solutions. obcained by the method for regions

influenced by so-called subsonic trailing edges do not confom,
however, to the Kubtta-Joukowski condition,

The.method in principle -m be applied to obiain the. asro-
dynamic coefficlents and hence the 1ift distribution for thin
wings of arbitrary plan form.and profile; the calculus involved
in obtaining explicit solutions, however, is likely to be diffi-
cult and impractical. The functions were therefore altered to
isolate and to remove nonessential singularities. The equations
80 obtained are suitable for numerical calculations of the aero-
dynamic coefficients of arbitrary thin wings at supersonic speeds.
Ag an example of.the method, the upwash between the leading edges
and, the foremost Mach waves in the plane of the Flab-plate delta .
wing wes calculated and compared with approximate results o’btained.
by neglecting flow-field interaction, The pressure coefficient
on the surface of the wing was likewise numerically computed and

compared with the exact solution.

¢

INTRODUCTION

A method for obtaining the 1ift, drag, and pressure distri-
butlons in the vicinity of thin wing tips at supersonic sveeds is
presented in reference 1. The basis of the method was to place a
thin diaphragm along a streem sheet in the plane of the wing
between the wing boundary and the foremost Mach wave. In this
manner an integral equation was established to define the slopes
of the streamlines in the disturbed flow fileld, The interaction
effects of the two surfaces of the wing in the vicinity of the
tip were thus evaluated.
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The main object of reference 1 was to present a method for
calculating the theoretical aerodynamic coefficients on the sur-
face of e wing. These coefficients were obtglned without an -
explicit solution for the slope of the stream sheet for points on
the wing surface influenced by noninteracting external flow fields.
If the slopes of the streamlines could be determined, the upwash-
velocity components in the external flow fields and the aerodynamic
effects of interacting external flow fields could be evaluated.
Presgure distributions and the 1ift and drag coefficients could
then be calculated for arbitrary thin wings at supersonic speeds.

The present report shows that the defining equation for the
slopes of the streamlines off the wing-plen-form boundaries is &
special case of Abel's integral equation. The solution to Abel's
equation is applied in order to obtain the slopes' of the stream-
lines off wings of fairly general plan form and profile. As a
special case, numerical values are presented for the slopes of the
stresmlines off the wing tip of a rectangular plan-form thin flat
plate. The general formulation is shown to give a method for
obtaining the velocity potential of finite wings influenced by
interacting external flow fields. The solutions obtained by the

method for regions influenced by so-called subsonic tralling edges

do not conform, however, to the-Eutta-Joukowski condition,

Although the method in principle may be applied to obtein the
asrodynamic coefficients and hence the 1ift distributicn for 'thin
wings of arbitrary plan form and profiles, the calculus involved
in obtaining explicit solutions is likely to be difficult and
impractical. The functions ere therefofre altered to isdlate and
remove nonessential singularities. The equations so obtained are
suiteble for numerical caloulations of the aerodynemic coeffi-
cients of arbitrary thin wings at supersonic speeds. As an
exemple of the method, the pressuré coefficient of the delte wing
included within the Mach cone 1s computed by numerical methods esnd
compered with ths solution "obtained by other methods.

SLOPES OF THE STREAMLIWES

The analysis is considerably simplified in a set of oblique
coordinates u,v whose axes lie parallel to the Mach lines of the
flow. 'In this set, the value of one of the coordinates of a point
is the distence measured parallel to the coordinate axis from the
point to the other coordinate axis, If the wing lies In the
x,y plane and the free-stream velocity is parallel to the x axis,
the transformetion equations from one set of cqordinates to the
other are _—

-
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u=%(¥~sy) | Y.,=:a-b;-(x_.+ﬁy)
z=F s =g - 1)

where M is the Mach number and- g =./M-1. (A list of symbols
is included in appendix A,) . : -

If the coordinate zero of the two systems is placed on the
point of tangency of the wing boundary (fig. I) and the foremost
Mach.weve and 1f the wing boundary is represented by the two
eguations v = vl(u) and v & vz(u) s ‘the defining equation for
the slope A of the stream sheet (referved to as a diaphragm)
near the plane of the wing measured in y = constant planes ip
given In reference 1 as :

W v ' w ry (u)
D D D 2\%,
© 5-Opldv

du Mu,v)av _ | du

Y vp-1 VA Wip-u v T

(2)

0 Vo (n)

where Up end Vp Trepresent the coordinates of a local point on

the diaphragm and UB‘ and Op ave the slopes {measured in

radians) of the wing on the bottom and top surfaces, respectively.
(The sign' of the wing slope is defined oppositely on the bottom
and top surfaces; for example, Op. end Op are both positive for

a wedge-profile wing at zero angle of attack,)

The derivation of equation (2) presented in reference 1
required that the three components of the perturbation velocity
. be continuous across the diaphragm. If the wing sheds a vortex
sheet, discontinuitlies in one or more of the perturbation~velocity
components are feasible. Because the diaphragm can sustain no
pressure difference between its. top and bottom surfaces, the .
x component of the peprturbation velocity must be continuous, The
partial derivative with respect to x of eguation (2) then applies
rather than egquation (2). Integration yields equatioh (2), except
that an arbitrery function of y may bhe added to either member,
Thig funobion of ¥y represents the circulation jin, the vortex
sheet and may be adJusted to make the solution to the eguation
satisfy the Kutta-Joukowskl condition in cases involving so-called
gubsonic tralling edges. . .

e et e ey e e — -
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-

Tnasmuch as the limits of integration with respect to u are
the same for both members of egnation (2) for all values of uy

and because of the nature of the functions, the equation may be
reduced, as in reference 1, to the form

p - Va2 (u)

ANw,Way - | - Opoplav. .
= 2 (3)
v (u) N VD-'V: v\(u) 2 VD"V

Equation (3) is & specia.l case of Abel's integral equation.
In the:rnotation of reference 2, if )

Coo<ps<1 :
—“—‘5’— it =ox) (4)
a (x-g) a<$xsSh
vhere x,m, and b are real and finite, then "the continuous
solution, if it exists, can be none other then”
mud [ 2
- 4 £(x)dx
oo we) s T T (5)
we . e a (Z"x)

. The ‘following table compares the notation of the symbols of
equations (3) ‘end (4) : -

“

Notation of
. Equation (4) |- Equation (3)
Vg(u)
¢ £(x) i’(v”j. ) —-A/—-="(GBTOT)M
: SE :
- V]_(u) 2 VD-V
x 'v]')
G . vz(u) o - B .
; v oo '
* a(t)  [AMwv)
g .%
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(The function f(v ) .is usually not zero at .vp = vz(u) -nor is
f*(vD) conbinuous, required. in referenmce 2., A singularity

exists. in the present problem that mey be isolated. -For a discus~"
sion of the requirements for application .of -equation {5) %0 obtain
a solution of equation (4), see reference 3.) -The- solution of ’

equation (3) 1s then given by eg,ua.'bion (5) as e !

-,

fn ’vz(u>( -
7\(11 Z) VX SF : ,;/Z-"V‘:D . e /"'VD - ( )

vo(u) vl( u) .

evaluated at g = V. -

The upwash-velocity camponent Vz 18.Qirectly velated to A .
by the equation : - e .

Vz = AFI-

(7).

vhere U 1s the free-stream velocity. Inssmuch as the sign of A
wés chosen with respect to the top surface.of the diaphragm, a
positive A implies an upflow, Substitution of A from gqua-
tion (6) into equation (7) yields !

. ..'a(u) _ .
7. =0 3 dv L Yo (8)
% 2. [V .
VE fopw) Y

vo(u)

evaluated at, z = v,

Equation (6) i1s relatively easy to evaluate when the profile
of the wing is symmetrical about the plamne of the wing. In this
case, (op-Op) = 2’ where o is the gngle.of attack, The

indicated integration for the wing plan form of figu.re 1 is car-
ried out in appendix B as eg,ua:tion (B5) o give ’

| 2o, Vz(u)-vl(u) L vz(u)-vl(u)
A R o o
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That equation (9) is the so.llitién of egquation {3) for the symmet-
rical wing has been verified by direct substitubtion. (See
appendix B.) -(If Op- Op 18 a function only of wu, the solution,
sequation 9, for . A still, applie‘s‘ providing the factor, 2o is
replaced by Op~ Gmp.) . .

A plot of Afa (from eguation (9)) as a function of the
in'dependent variable % is presented in figure 2, Along
the foremost Mach wave, vz?u), -;'v]'_(u_) =0 eand A =0. The value
of A Dbecomes infinite at the wing boundery corresponding to the
mathematical discontinuity along v = va(u).
vo(u)-vy (u)
with the ald of figure 1. The gquantity vp(u)-vy(u) is the length
of the line a b, vhereas v-v,(u) is the length of the lime b v.

From figure 2 it is then appsrent that v .must be close to the
wing boundary before Afa becomes very large, .

The quantity may be 1nter§reteﬁ goometrically

Ag a further .illustra.tion_,- ‘the diaphragm slope of a rectan-
gular plan-form thin flat-plabte wing has been calculated, In this
case, vy(u) = -u, vp(u) = u, and by eguations (i)

va(u) - vi(n) '
R C v::x = é% -1 (20)

The quantity By/x was therefore .taken as the independent variable.
The resulting slope ratio "N/ is presented in figure 3 as a
function of By/x. The ratio Ao remains fairly small except
near the wing edge. For example, at a Mach mumber of 3, Afu is
still only 4.26 for y/x = 0.0053.

APPLICATIONS TO AERODYNAMIC THEORY -,

The explicit solution (equation (6)) of the integral egua-
tion (3) has direct application in the calculation of the 1ift
distributions of thin wings. The solutions obtained for casges
Involving so-called subsonic trailing edges may violate the Kutta-
Joukowskl condition and hence should be used with ecavtlon. In
reference 1 a method.is presented for obtaining the -aerodynemic
coefficients in the viginity of wing tips under the influence of
independently disturbed external flow fields; that is, each dis~
turbed external flow field includes no other external unknown flow
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field in 4ts.forwaprd:-Mach cone., By applieatfon of equation (6),
portions of the external.flow field may be-.evaluated, The inter~
action effects of one external f1eld on another may be determined,

The detaila of* the ‘process will be illustrated for the. wing
plan form of figure 4. The iea.ding edgea are defined by, the_.
equations -~ - " . .

. v- -.-.‘ vl(ﬁ) .o us ul(v) '
Covamy) Coort wsug(v) o ooy v
V= vs(ﬁ) or - u= ug(y)

The diaphragm ares Sp may be divided into sections Sp - ewd . -
Sp,2, where there is no 1nteraction,, ‘and SD 3 end SD 4s Vhere
there is inberaction. The.,slope A of the diaphragm SD 2 1s
given by eq_uatiqn (6) as . -

P
’ . . . -
.l . -

2 va(u) . )
vl S ﬂ.’VD‘ ¢ (O'B"UT dv
Aglwz) = 2o T -;T (11)
. Yz(u)“ Vl(u) -

<

evaluated st 2z = ¥, In & similar msnner, the slope of the
diaphragm SD,]; is .. T

2 . Uz (V)

13 dup | - (Op-0p)du
7\1(2‘,7) = 1? -a-r; - w-—zr:;; '2*"'";:";' (12)
us(v) )

evaluated at z = u.

Either of two schemes mey now be applied to exténd the calcu-
lation of the velocity potential beyond the shaded region..” In
caloulabing the influence of. the external field - SD 2 and SD 41

the dj.aphragm SD,l ‘is conaidered as pert of the wing, simila.rly,
when the influente of the extemal fields SJ) 1-and Sp'g is t,
be calculated, the diaphragm 9]) 2 is considered, :88 part of the
wing, The methods of peferenge 1 ,$hen directly apply. )

- vy
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" +.iThe-velociby potehtia]r-.qnlr 8t eny point. “w w qn “the top

40 of"the wing is given By the in’begra.l .- T
e T T r,, ) L.
‘ A 4 R du dY * U . .
Pp = - % b i r i}‘d_u &y - (13)
J(uw-uT(Vw-vY W (ua) (v3-v)
Sy , JSD :
or in Cartesien coordinates . “ia.
7 g B

:f rons g 4k 75?.’ | E_shdbedon
' "«/?x £)Y2-p2(y- n)‘ ‘“ ﬁ E;)!E ﬁz'("-n)
o ?",s: .(14)

vhere U is the free-stréam velocity (psrallel to the x axis)
and S;; and: Sp:are the wing end diaphragm areas included. in the
' forwerd Mach cons from the point ﬁw, Vars OF. X,¥.-

If for simplicity the qua.nti-by K' ‘is defined as

R S R T

SEINRL R EE LI T O F L s o2e .
K(x;Y:E:TI) =

" oy - o ~
o/ (x-£)2-p2(y-n)e *
then in the potatic bf’ £1 !
N N - qo " T qul.‘..“::d-.., ; .-_.c-é.
N . "~ b7
for.
P = - " opgatan - || Agdf an  (15)

S,(1+2+344) Sp(L+2+3+4)

vhere 'bhe nota:bion Sw(1+2+3+4) ‘meens’ in‘begratiap over the su:_.'-
face. Sw 1y + Sw 2 + e . According .o “the. methods of refer-

-ence l . ERR TR
s “a = ) =

.'-... . :: o e ‘E&E &’q = ..:‘_

Ty n" R T 13 F D T

sD(1+2+4)
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and

L}

Sp(1+243)

Addition of equations (16) and (17) ylelds

Sp(1+2+3+4)

Sw,4

9
AKAE an = [ (CTB:_T) Kdt an (17)
Jsg(142) . -
( BFOT) xaga + (op-op)Kakdn
J8y(2+3) Sy, -
n
-  AKdfag " (18)
JJsp(1e2) -
Substitution of equation (18) into equation (15) ylelds
r\‘\
ogkatdy - GB;GT Kdkdn
T ;-JSW,(2+5)"
G.I.Kdid.n + MEdtan + ApKdEdn
JJ5p,1 Sp,2
(19)

vhere Ay and Ap are given by equations (12) and (Jl),

respectively.

An alternate scheme would be“to caloulate the slope of the
diaphragm in regions SD,S .and. 'SD,4*

By applying equation (6),
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. = avyp. vs(u) A (w,v)av
A () = 2 ===
4\ " n . . ] gAY . ¥n-v
% Jep VI o T
(20) -
evaluated at z:.é
’ 7\3(Z,V) =
(21)

- re uz(v)‘

evaluated at z = w. This progess may be continued until the
slopes of all the diaphragms are known.. The velocity potential O

at eny point (uy,v,) on the top surface of the wing is thep given
by equations (13) and (14).

One further oase.'_wi'_l_.l be mentioned. If v = vl(u) reduces
to a point at the origin, there is a continuous interaction of the
two external fields. (See fig. 6.) The slope of the diaphragm in
the reglon SD o may be Written as x

z ~v3(1) va(u)
22| [T e | o
" 3 /o Vel 2/

7o (u) 0 vs(u)

(228)

evaluated at z = v or
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Z v.a.(u)
: 13 |7 aw (0p-Og) av .
7\2(11,2) = ; S‘z- J____ zﬁ—.‘; .
5 vp(u) D jvs(u) D
131" dvy 5(w) N (2, 7)dv
" r~ = - (22p) :
: i vp(u) 'ﬁ:ﬁ? 0 v:D:?
eva.lua-.-i:eﬁha.t' z = Y. Similariy, _ '
22t o [ e
. ) z v = D e ) oy . CH, L
l.;:’. ® a5 (7) ’- KZ:nD Ju (%) -2 ,/up-u. ; .-
. 1- 5 > fre du]') ug('V) ?\z(u,v)du ( )
S - em . . s 23
. T3 e . . o/ up-u
: » uz(v) -_z' ,uD 0 : ? -

oY
A SR

evalugted at z = u,

Thus there are two equations for the two unknowm functions ?\1
and Apz. The funotions AN and A, cen therefore be determined,
at least in principle, either by successive approximstions or by
direct substitution and solution of the resulting integral equa-

tion. (IfI‘the wing has & symmetrical plan form about the x axis,
N(u,v) = M(v,u) and the two eguations (22) and (23) become &

single integral egquation., Furthérmovs, 1f the flow is conical,
then A, is & function of v/u.)

NUMERICAL CALCULATION OF DILAPHRAGM SLOPES
o AND OF PERTURBATION VELOCITIES
.Calculation of diaphragm slopes, - The calculation of the_ dia-

Phragn slope A and of the perturbation velocities .ég.) ang, gs—)
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in closed form or in series will generally be difficult for a wing
of arbitrary form. Because ‘le imtegrals defining A and o
have finite Yegions "of integra.tion 'bhey are well suited. to purely
numerical integration. f A PR

In order to ca.rry out numerical mteg:'ation, it is always
necegsary to eliminate infinite singularities from the Integrands.
For the calculation of perturbation velocitles, it is furthermore
desirable to eliminate the’ extra step of 'bhe numerical differentia-
tlon od’.' an in'begral P .

The eva.lua.t:l.on of the :lnfbegrals .involving eingularities is
disoussed in appendix B, Eguastions are derived for the caloula-
tion of A and of the derivatives of ¢ +that are sultable for
calculation with adding calcula.tors or with the aid of mechanical:-
campubors. 5 '

*

The subsequent equa'bions ha.ve been d.erived for a general wing
with a mean camber lin,e that is curved at the edges of-the wing.
If the curvature of ‘the ceamber line is #bro at the edges, the
termg involving the derivatives of (OZB"GT) become zero. In the
case of an uncambered wing, - (0p-Op) hes the constant value of -2a.
In these impoxrbant cases the eguations are ejmplified

The final eg_ua.tione for )\z(u,v) equivalent to equations (20)

to (22a) are derived in appendix C as equations (C13), (C16), (024),
and (C25). (See figs. 5 and 6.)

e vyal 8a(w, vg)
AP
T T (———Y‘Vz

v .o
g ht (VD;)-.]’J.-"(V")

1.
Tz O3

-YD

where

LY

. 2- Ty . _‘-"
. dVD._!_.;F.I}L(v) . /V:,-Y-a . (24) .

.
“~



Bt {u,7vp) =

(Og-Gplp v3/vq - [(vD-v3) + {vp-v2) d(op-oy)
e G P )

v, . a( -CT)

o[

. "J¥3 _ {25)

82(4,v2) = (op:ople: /727 = Iy log H

-
.

T ' Vg " '
P “-l‘ 6\ } A dv +r {"B"“I)‘(UB'GT)Z

b 4 (‘26)
fo VAR am '
O . ‘ '- 5
o 4 vo(u) ' i <
-dn '3 , h : -
Ay = = & (uz,v) ' - . {27)
i . . "
and (rr...-nT\.-. mesne the valne of (J.-a.) at ouree’ 2., (Qes Pila. 4.) :
fa L - A S ol ‘-ﬁa‘ e g

Caloulation of swrface velocibies. - Tha'veiocity potential P is given in u-v .coordinates
by. the double integral D '

.3 é M\ e (cB-ch) {0p-0p)a~(vp-va) |~ 2
o et ,——9 3/2 ~ sfa- .. o
- V39 {vp-¥) Alwy-v) '

P8%1 “ON H& VOVM

¢T
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.'a- . 'uw. vw

U
m: -‘.—-—
0 0

cdu dv (28)
o (o ) (V3r=7) o

vhere u,,7v,, are the coordinates of a point on the wing and where

G is to be interpreted as the wing slope, or as the diaph;'agm
slope, a8 regquired.

The velocities Vy and Vy " are given by

_ X _M.fop 3
L 28 S &;*%}

b T (29)
- BCP M dQ acp) ‘
y© 3 &" ;

The partia.l derivative éip_ : mgy be comput'ed 't;y use aof. the follovi- :

Oty
ing eg_uationq ’ Which are derived in appendix C as eq_uat:!.ons (053)
to (C36). .

30 . Uyr R(u,vv)-R(uw,vw) g 2R( vy, V)

= g i . 30)
. ou, 2Mn 3/2 ? (30
_ g’:« lo (uw-u) / s/-_uw ", :
where, for points on the top surface of the wing, ' .
) VAL AL
afu,v,) = 20m(u,v) V-v3 + A (u) log - -
Ryp(u, g oy Vyy wV3 + I I
~V.
3
( Ay ) dv
+ Al’ - — —
[vz=v] o Vu=7
Jo
[V o (u,v) -oT(u,vw)
+ av (31)
\.73 h VW-V
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for points on the bottom surface of the wing, .

A t. .
.

/ Vgt v .
RB(u:Vw) = 2GB(u,Vw) m Al(u) 1089 VW N/_—

O R S °B‘“"”*°B‘“"w> a (s2)

Yz

‘e

For points. on the afﬁer,d;.lgp]iragm ,'_.(%}4, in fig. 4),’ o

Bp(w,7p) = - Bg(n,vp) = (o5-0plz (va“vs - /"‘D""2>

'V'

: .: [GB“I')~(°3-O‘T);3] ﬁF '_(?5>.;

3

o . . - n

and, for poin'bs on the forward diaphragm (SD',I ih f£ig. 4),- R = 0O,

The Fumotion R -18 a first integral of the equetidbn:for the
perturbation, potential or for its derivative w'ith respect 0 . Ue. .
A similar function mey be defined by 1ntarchanging the roles' of‘ '
u and -v. in eguations (31) to (33)-to obtain .either the potential -
or its derivative with respact to vy by a subseq_uent integration. .

The paths of integration used in the calculstion, of g;:. cBre .

shown in figure 7, Path 1 lg used to compute the function R,
pathz tocompute cp or %ﬁ _ . - P

It is noted that R 15 singula,r 2t the point v = v3 if
A £o0. This point does not sppesr in the integral Por @ or

-g%;. xcept when Vv = vs(u) and. the. singularity 'bherefora intyo-
0P

duced no dirfiaulty because at v : = vs(u) tp 15 finite an,d

) . a"w"

~

1o infintte- 18 Ay(w) AO. - . ..
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The integrand of équation (30) is infinite at u = = Vg . It 18
not convenient to remove this singulaz!ity beoa.y.se -to do.so_would
require the- caldulation of __?%’;El. Deta.ils of the results of

integration by the use of & power-series expansion of
R(u,vy) - R(uy,vy,;) in a small reglon of. u. near w, ‘are given

in appendix C -in a form suiteble for numerical “cglculation.

As en 1llustration of the results of the numerical method,
the diaphragm glopes and the pressure coefficients were computed
for an unyewed flat-plate delta wing included.within the Mech cone
from the vertex. The locus of forwexrd edges of the wings are
gpecified in the abligue coordinates w and by the relations

'V's .= kl.l

vo=ufkoruy=kv .

In this case the diaphragm slopes are glways subject to inber-
acbion effects. The calculations were caryled g¢gut by & method of
successive approximation, Xight equally spaced stations were
selected from the forwarl Mach line to the edge .of the wing along
a line, u = consbant on the dizphragm. Integrationa were car-
ried out 'by S:lmpson's rule. .

.rr“

'.Ehe diaphragn slopes }‘l for k = 0.25, 0 50, and 0,75 ave

shown in figure- 8 together with the elopes neglecting all inter- ..
action -as -compubed by means of equation 9). The dimensionless
slppes - Ao havé been mnltiplied. 'by - = in arder to avold

representation of the pol,e at - ku =-1. The Intercept of the curve

N

et v/ku=1 1s.the value of A, * . : . 7 o

The results of this integration show that even for a sharply -
pointed wing (k = 0.75) the effect of the interaction is quite
small. For meny calculatiagns it will therefore be permissible to
neglect, at least for a flrst epproximation, the-effect of the
interaotion. of external flow fields -ip +he. calculation of dia= -
phragm slopes and, pressure coefficients. T . X

The, pressure coefficlents.yere: computed 'by the use gf values ' |
of R at eight equally spaced points along a line ¥ = constent g -
with two additionel points plaged pesr the edge. 7V = u{k. .The
exact pressure ooefficj.ents a8 computed” by the methods of refer- )
ences 4 and 5 are compared with the numerjcally computed pressure,
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coefficlents in figunl."e 9. Agreement. between the pressure coeffi-
cients as computed by the two methods is close, even though only a
few polnts were used 1n the calculation.

Flight Propulsion Research Leboratory,.
National Advisory Committee for Aercnautics,
Cleveland, Ohio, August 25, 1947.

e e e et a—— o —— .’ - .- - i v -t - g e o=
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The following symbols are used in this rebéit:

DS oS s . Lo JACH TN--No. 1484

- -~ .o, -t
~ IANLE?S SR

R I S £ e

- - . '
RIS . - e L

’ Y S .

: SYMBOGS - - »*  cof o s Rt
coefficlents

point values of function

pressure coefficient

first integral for calculated diaphragm slopes

og(u,v)
ov

regular terms of g!(u,v)
constant > 0
Mach number

first integral for calculation of perturbation
potential or 1ts derivatives

plan-~form area

free-gtream velocity

obligue coordinates whose axes lie parallel to
Mach lines

perturbation velocity

Cartesglan coordinates (also used as subsoripts to
indicate components of velocity along coordinate
axes) ‘ :

angle of attack

cotangent of free-styeem Mach angle

interval of variable of iIntegretion

Cartesian coordinates
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A slope of stream sheet near plane of wing measured in
¥ = consbent plaenes -

A strength of singularity in diaphragm slope at wing
edge

o slope of wing surface with respect to X,y plane as
measured in ¥y = constant planes

V) perturbation velocity po{;entia.l

Subscripts:

B bottom wing surface

D diaphragn

T top wing'sur'i’a.oe

\'§ wing

1, 2, 3, eto, referas to numbered ¢urves or surface areas

Examples :

CT slope of top surface of wing

°91‘,D potential on top surface of wing due to diaphrasgm

Su,5 wing area 3.

41 curve v =.v1(u)

u curve u = u;(v)

7\1 slope of diaphraegm in plan erea 1

(OJB"G‘I')z difference between slopes of' bottom and top wing
surface at ourve 2

82,D(VZD) portion of flmotion 8>(vp) due to diaphragm
elements lying shead of the wing on a line
u = constant

Bp(u,vy,) f.irs'b integral of perturba;tion potential for

points .on wing having the coordinate v,
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T ¢ APPERDIX B -

_ EVATLUATION  OF EQUATION (6) FOR-WING WHOSE PROFILE
IS SYMMETRICAL ABOUT PLANE OF WING

' - Op=Op- " . L _
In this case, ?P_Q_T_ = a, the anglé of abttack; thus equa-
tion (6) becomes R . '
% | va(u)
19 ) 3 @dv -
A(w,2) = = = 4/‘_’1‘7 (B1)
l (4 %~V hd
vp(w) VO ) VP
Evaluation of the inside integral yilelds '
- -- z
on d («/ Yp~V¥g - «/VD"V1> '
Au,z) = - = — - dvy, (B2)

L - /z-vD
| Vg(u)

The %wo integrations indicebed in equation (BZ) may be obtained °
from formulas 111 and 113 of reference 6 to give

-z X
/7 =V,

. D_2 d.‘V’D = _12'5_ (Z-Vz) (33) )
/Z-'V':D .

o (u)
U, ooy el [PE ()
av, = fz-v)(vo-vy) + (z~vy) ten”
= AR ’ 27"

Vo (w)

Substitution of equations (B3) and (B4) into equation (B2) ylields

1
T .. N




s e e s o o et he e b e e o

?\(u,Z) = - —z;u["'

¥lo

% =V,
LI%— (z-v,) - [(z-v5)(va-7y} - (2-77) ten™1 ’\.’72“’:;]

from which

¥8¥T "ON NI VOVM

- -1 Y7Y2 2™
Ma,v) Qm \/,2_.,_,L T_vz - ) —w = v_.v.z) (28

Thet egua'bion {B5) 48 & solution of equation (3} may be verifisd b_y substitution;

D "o . " {'"p ' D .
o . . V-V Ty ¢ :
Mu,viay _ 2g e tant B ey 2 [ {ven) dv-c(.l'\ . 8y

v o+~
Y~ Y [7z w| _’\](v-vz)(vp—v) S
JTam) - T Jrp{n) : Jvz{ul Jra(n)
' . . - (BS6)
The first dntegral of the second member may be integrated by parts to glve
« 1 bl ‘:v;D _?.1_3
. (V'Vg) -1 v-va'
1 tem dv = -2 fyp-v tan
. VoV 'V'gn-‘vl
Jv, S 271 e
- i
D V=V } (Vouv D Vo=V H{Vpo-v
J o) Vo NAS L (87)

(v-vy) /775 . (v-vl) VA

W 4 Jz

T2
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Combination of the second integt'al of equaetions (B6) and (B7)

yield.s
i)
& :— tan~t v'va \/ (v2-71) | 4y
L ~ vy * (v=vg) (vp-v)
v, (1) D
2
[”D v
2a —_— : .
= (VZ"V:L) (YD"vl) . (B8)

Jvz _(v‘-‘vl) ,/ w2y ( TtV Yy~
Equqtion (B8) was integrated by foimule 195 of reference 6 to give

o

D - .
- ToVs Vz"'V'
* = Al ’\//(V-VZ)(V]J;-:V)' A
vz(u) DY S -
' (B9)
Evaluation of the third iptegral of equstion (B6) yields
VD . . ’
—a S AR 2a,,/v’ > -'v"'z" (B10)
'VD-'\T .
Vz(u)

Substitution of equations (BS) and (B1l0) into eguation (BG)_ yields

Koy
MO o o ([ - ) O
vo(u) '»/(v])""j _
Bub )
vg(u)

i;:’v - 2 <¢vD-v1 ,ﬁrf—-v2> . e
vy (w) o

—————— ————— — — . B Bl
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A comparison of eguations (Bll).and -(B12) shows that A as given
by equation (B5), is a solution of the equabion

e
»,
- L]
.
.
- »- n .
' - 1" L -
w -
- 2 - 4
K]
. i
. 3
- -
" by
. .
H * »~
1
o
-
' .
~ o .
«
. . LAY -
3
3
\
. —a-
. - -
¢, H b -
.t
v
. .
-
: -
1
]
B v
-
‘
[
>
A3 ! 3 " " ¥
- ape w . .
S
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APPENDIX C.

NUMERTICAL CALCULATION OF DIAPHRAGM SLOPES AND VELOCITIES

In order to compute dlaphragm Blbpes and velocities or pyres-
sure coefficients by numerical methods,.all the infinite singular-
ities with the integrals must be removed and evaluated geparately.
Whenever possible, numerical differentiation should be eliminated.
It is also possible to eveluate integrals having infinite singular-
ities by expanding the integrand in series near the pole and then
evaluating the integral by term-wise Integration of the function,

The first method has besen chosen because in many cases, for
example, for wings with flat surfaces, the integrand left after
removal of the pole vanishes for all or part of the region of
Integretion,

The first part of this discussion in appendix C is devobted to
the isolation of singunlarities in the integrals defining A. The
second part considers methods of computing velocities on the wing
surface,

Caloulation of A. -~ The diaphregm slope A is in general

. glven by en equetion of the form of equation (20) or equation (22a),
which for the region aft a wing surface in the direction of increas-
ing v 1is

- z A [va(uw) z(u)
av. A (u,v)dv
19 D Op~Op Ay (v, vidv
R I | I f

v,(u) 5(w)

(c1)

eveluated et z = v, where ?\1 is the diaphragm slope ehead of
the wing on & line wu = constant.

Eguation (Cl) may be formselly simplified by defining the
function gy(vp)

vo(u) vz(u)
OO, A dv
& (vp) = 2L av - 1 (c2)
2 fip-v 0 v

V3 (u)
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The. alchlation :of - Ay -vmaf be divided *fhto two pd.rts- 'bhe
calculatitn. of - N gt Quee fto thg-Fidebdsh - - 1. T

g(u)

(O'B-GT) dv
2 VD-'V"'

&2, wlv}= {-. {(c3)

and the calculation of }\2,]5' ‘due to the function:

.vs(u) o .

"l "f.}*i”dv o

SR =S T (o)
D .

PR . o ._‘ : o LA - .' ".-" N 7 W R 4

Ea.ch of the integrands of eguatiops (03) a;ad (04) may contain
poles of order 1/2 for some value of v. The integrand defining
32 w 18 qingular for Tp = va(u)n .- The effect of the singularity
ma.y 'ée isolated and evaluasted by - * ‘- o E

.
L

.....

.

| vz(ul et P LI v»é'(u) PR -{x. L *
SRR I ( '%)"'(OB"’T)a “ ("g"’T)g i
ga?w(vD) = 2o d.v + Y d.v SR
5(0) s wg(n)

s PR

= (OB:"&J'):Z (/VD“ 3@ ""'-;/;Tﬁ*.vg@.)'

Vz(u) ..
- # av - Y E
N [(OB qr: (OB GII)Z i S aTen Ll (c5)
=
vg(2) A T

vhere thé “term: (OB'U‘I‘)-Z g ‘used to mean the valué ™ A,(UB-OT) at

curve'2 and’ ‘ifn \'ﬂniclr the second tem has ‘s finite integrand ‘oven - "_-
at ¥ é g S -
D '5 iood, o

~ - - % -

139

)

v

=
¢,
?

b

2

3




26 . NACA TN No. 1484

The integrend defining - g p (vp) hed a pole due to 7\1 of
order 1/2 at vy = ¥3(u). THe effect of thfs gingularity day be
isolbted by

Ay .
N = oA (c6)
and by rewriting equation (C4) in the form.
v5(w) 75(1)
<A &
&,(vD) = e + 2 6y

o V[l o VAR

If the value of Al is computed by the use of the equation

e B R e o

the funotion p(v) will be everywhere finite, as may be seen for a
special case from equation (9). The funciion A, is defined by
the eguation . )

z. us(v)
N -1 N (o5-0p)du (09)
17 ny Z -, . 2,/up-u

uz(v) ~ 0

evaluated at z = u.

The term (Og-Gp)/2 in equations (C9) and (C10) is to be
interpreted as including -A, -if the integration from O to uz(v)
includes & portion of the area Sp .

In the immediate vicinity of the bdge “3(V), the function 7\1'

has g value due mainly to the strength of. the pole at that-edge.
As messured alang a line v = constant, in the vicinity of the
edge ,,/u-uD in equation (C9) can be replaced by its mean value,

in vhich case egquation (C2) reduces to the form
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g (7)
1 n,/ur-usi_vi : 2 uz(v)-u
0

In all cases, except for en eirfoll with a pointed tip having bot‘h
odges swept behind the Mach angle, the valus of the integral

() :
(05-op)du - g (u) - (o11)

0 2 up~u

(for example, see equation (9)) , or the yalue of the equivalent
expression in v willl be known fyom & previous caleculation of
g1 (up) om 82(v). In the vicinity of the curve u = uz(w),

equation (C10) may therefore be written ag

., & (ug)
;\ ~
1 g, fo-ug

From equations (C8) and (C12)

g (n,) 'v v g (ug) '
1im 1'\'3 3 Sl _§_
Ay = veTz(n) T AJusug T @ /\lau 7B (€13)

The contribution to g, p(vp) from A s
. 2

(cie)

vs(u)
Ay o N R
- = - Al log, ~—————r— (c14)
N (Tz=7) (vp-v) - Ay s .
0
h b itt
ence, gz’D(vD) may be writtep as
v
3 - .
g olvp) = - (7\1 - Ay ) dv?' :.Al log, Y * il
’ VAR AA S W/ - /75
0

(015)
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Finally, 82(VD) is given by the relstions

ealvp) = oo (/o7 /55 )

Y, (u)
VAR AR ../" | [(GB"OT) ("B"’T)] av
BV~ Y=
'V's‘ ..
'9'3 .
_ | (7\1 - All ) av ) (016)
o ) AT -
where i | - |
Peana vs .
Ay =223 g () o (o)

is evaluated at curve 3,

For a purely numerical integration of the squations for A, .
it 1s desirable to eliminate the differentiation outside the
* integral sign in eguation (Cl). The diaphragm slope A, ocan be

computed by the use of the equation

v

dv.
v =22 =2 alw)

\ /V“VD

Y
+
Al

(c17)

e e e v A e e oy .
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which may be derived 'by i:fbegra:b:lon by parts, &prior tqQ the
differentiation. '.Ehe ouant:l.ty 82 (vD) 15 efined. as

weas s¥is oo

M see g

gz' (vp) = s &2("p) S
BvD )
Equation (C1l7) is valid if g' (VD) is Pinite within the

interval vo(u) to v and'st 1t6 1imits ‘and has &b most a Finite
number of d.iscontinui“bies. In ordér to use eguation (C17), the
portions of g'(v) that do not satisfy these conditions must be
isolabed and evaluated separately.

" Thé integra.nd &t equation (017) is alwa.ys singular a:b the
point v = vy, ,

In general gp'{vy) “also has a pole of order 1/2 a.ﬁ
V= va(u) contributed 'by -‘bhe +t6rm "(GB’GT)Z ,/vD—v 111 eg_ua.—
tion €C18). Its contribution ko' 7\2 is™

LIS

- § (0302 R 1)

The "Infeégral in thé general expréssion for gé' (v:D')' due o
the integral

0aT) - Gudnle |

(Op0¥) - Op-On)z .o (c19)
vs 2,/ vp~v

in equation (c18) will have an infinite integrand at vp = va(u),

unless the texm ) .
| [B(OB'GT)] =0 (c20)
. e _ov 2 - .

The expression .(019) may be written
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v. - §(0p~0p)
(ﬁ‘B-bO'T) -.(O’E-D'? (g"VZ) [.‘-—-aB.-'VI-E'I 7 ]z
T ey ot g d.v
V3 B

(v-vg) (OB-OT)

- B,/ 51)-'\7'

3

Coo. 0 T(e21)

The first terxim of expression.(C21l) has an everywhere finite deriva-
tive with a finite integrand given by . .

o)yl - () [222]
) el e . av {cz2)
4(VD—‘V') -
3

The contribution of the-sscond:term of expression’ (021) to
g(vp). 1s

(op-Op)

o ]z el (57 - v55)

e
("

£
Y

= (vy-vg) ﬁ;ﬁtg] - ©oo1ew, (023)

for which the corresponding contribution b0 gp'(vp) is

» s.-.

[b(ogv-oT)] va-vs) + (vD-vz) ﬁ]—)_:‘;;]

2 L v_-D-v

Finally, 7\2 may be computed by adding the contributions of the
regulay and singular terms of ga(VD) and gy'(vp):
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IS RETN '-lg ..‘F' 'r. [ :
?\Z(u,v.). =2 .,@_.;:.;;_ %‘ (UB qr)z 'I- — ,YD w
Fow(v) v (o)
vhere -
MVALS
: (op- T)z W ¥p .
wH(vp)=m——m e Ay
2 /vD-v3 D™V3
TR ) E»('BB-c'%T)]
+ R A
B P
+% 61 - ! = 3
VY5 2
lo .t (vp=v) ,
,'_ij , - T . " .
a) -
2( ) (GB.GT)]
R (O' —O'T) (UB 0',1,)2 - (V"vz) ov E ay
Tk, 4(VD_V) /2 .
vs (1) )
) \ (c2s)

The function "h'(vp) contalns g)l the regular terms of gp' (vp).

Calculation of surface velocities. The veloclty potential @
is. given by the double 1ntegra1 v :

Alg

J (x-£)P-p2(y-n)2

- _odldy - (cas)
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in which the integration ia .carried out over the forward Mach cone

or over limited regions of this cone as described in reference (1)
and vhere .G~ represents the alope of he wing surface or the ,slape

of the dia.phragn, as reg_uired . . i )

In most cases interest centers In the velocitles or in the
pressure coefficients, which are proportional to the x componend
of the velocity. -The components of velocity are given by the
equations L

v ___a_g=_g__5__ . odat dan _
- BIJ. /i (x-mz s% n)z
y F e B —3 " e ey ' a

L ter S (DR em)®

The manipulation of these dexivatlves 1s facllitated by transform-
ing the integrals to the u,v coordinates, -~

. uir, v’W’. . .
) = U ' Odu dv
o (0~2) (V=)

cP(u‘,,, (ce8)

0

where u, and v, are tﬁe cobrdina'i;es of & point on the wing. In
terms of equations (C27).exd (C28)

) o
v =0 a:;'&)

"y" _1_;_(@ 5?;;) " (029)

The derivatives of the potenti.al with respect to uy, and
‘are given by the rela:bions . .

e ———— = - - e m e st oy e mt - A —— e s = v = am s
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'\uw V‘VW
) e o du dv
E T M Ei;w- V’(%-'lﬂ ,,/ =V . "
JOo  JO
: P Y
é_gg_::g__a_' candv (030)
ovy Mt Oy o Jo N Ugra o (v=v)

The caloulation of the derivatives may be simplified in-the
menner subsequently decribed for the caleulation of O%/d w,, The
equation for the potential may be written as

Yy . v
U du olu,v). et T, s
o e s [ S dv Cc31
? " 0 J—u;:'ﬁ 0 "/-;T;:; ()

vhere the symbol v is tmderstood to include D When the limit

of integration lies on one of the dlaphragms, in which case the
contribution of 0 <from both top a.nd bottam wing surfaces forward
of L)) must he cons:).dered

It is convenient to define a function R(w,vy) by the
relation

: _ Ty -
R(,u:.'vw) .5= ) __(0 u zV) av (c52)
Co- 0 VW-V
then \
é5"’- - o R(w,vyr) - g};wﬂw) aw oz BT L
T e s

For pointe on the top éurface of .the wing Rp(u,vw,;) is given
by the relation

B e R b i e T gt R T T e L SR
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Rp(w, vy, ) = 2@3(u,vw) ,/vw-vg, + Al(u) :!.os‘a JJ—E

v3

R ?\1_ Ay (w) &y
o «/VS"‘T «/VV“V

(c34)
and the value of RB(u,vw) fs given by the relation
+
RB(u,v ) = ZOB(u,v ) V3 - Al(u) log, —F7== ﬁ- f—
/Y. '/—.-
Hv‘s - N
} [7\1 ) Ay () v o
Jo ,/_73"‘7' '/vw-v
) ) =
b BT B s
J¥s VAL
For a point on the after diaphragm (A;) , the value of
RT(u,vD) end -Rp(u,vp) is
RT(u,vD) = - RB(u,vD) = Z(UB"'GT)Z /vD-v '/'v:D- 2>
Vz(u) :
+ BGB"'GI‘) - (O'B-I'C'T)ZJ ‘/gg-_v (056)

vs(u) -
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H

For the calculation of 1ift distributions, the contribuytidn of
Rp(u,vp) end BRp(m,vp) cancel and. ma.y ‘therefore be neglected.

For flat-pla.te w:lngs OB +Op = 0.

" For poin,te ‘on the Poriard djephragm (?\1) , the dea?ining

integrals for R(u,vy) includes only the effect of 2\ The
valué of 'R '1s therefore zero. .

The integrend of the 1ntegral in eqae:bion (053) generally
becomes infinite at u =-u,. Although-thls integral.oould be .
integrated .by parts and the integral obtaifhed in terms of the
derivative of R(uy,v,) with regpect to wuy, ‘it seeis prefera‘ble

in this case to expand R({u,v,) in a power series about the: -
point -u,. When the func'bion R(u, ) can be expand.ed With su:f;'w-
fiolent aeccuracy In & segment of width 28

“'w >u.x u-—25 . L
asapaz-'abolaoftﬁeform ) R .. ‘
R(w,vy,) = R(uy,vy,) + A(u-u) + ']3(u‘,,'-1,1.,)2

and, if

R(u,~28,vy,) = R(wy,vy) = &

R(uy-8,Vy) = R(vgy W) =
it may be easily sho'?m that

Uy

R(u,v, )R(uw,vw) 2 &b-a
u ?(uW u 3/2 A/:s

It is of interest to note that the function R Jlg finite for
all velues of u except u = uz(v). R(ug,v,) and 8—9 are

finlte at the point (ug,vy) If A,(uz,vz) is zero.
The calculation of g;.i’. 18 oarried ows similarly to that of
W

%%;’ except that the roles of u and v are interchanged and a
suitable first integral is defined to take the place of R(u,v,).
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Figure |. - Wing plan form and diaphragm for equation (3).
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Figure 2. - variation of diaphragm slope to wing angle-of-attack ratio for wedge-profiie wing.
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Figure 2, ~ Concluded.

(b) Enlargement of area shown {n figure 2(a).

Vartation of diaphragm slope to wing angle-of-attack ratio for wedge-profile
wing.
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Figure 4. - Wing plan form and diaphragm areas for equations (!l) to
(141,

(Velocity potential of shaded region may be calculated by
methods of reference |.)




Fig. 5 NACA TN No. 1484
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Figure 5. - Regions of integration for equations (I5) to (19),
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Figure 6. — Wing plan form and diaphragm areas for equations (17) and (18).




Fig. 7 NACA TN No. 1484
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Figure 7. - Paths of integration used in computing perturbation velo-
cities on wing.
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Figure 8. - Diaphragm glopes

(a) k = 0,25,

A/a  for symmetrical flat-plate delta wing,
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Figure 8. - Continued. Diaphragm slopes A/a for symmetrical flat-plate delta wing,
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Figure 8. ~ Concluded. Diaphragm slopes A a for symmetrical flat-plate delta wing.
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Figure 9. - Pressure coefficients of an unyawed flat-plate delta wing.



